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Various two-dimensional problems of the dynamic loading

of a slab are solved for a material characterization that is

elastic-viscoplastic and exhibits anisotropic work-hardening.

The governing constitutive equations are based on a unified

• formulation which requires neither a yield criterion nor

loading or unloading conditions. They include multi-

dimensional anisotropic effects induced by the plastic de-

formation history. The theory also considers plastic compress-

ibility which depends on the extent of anisotropy. A numerical

procedure for solving the equations is developed which in-

corporates the history dependent anisotropic hardening effects.

Cases considered are the dynamic penetration of a slab by a

rigid cylindrical indenter, and a distributed force rapidly

applied over part of the slab surface. Both conditions of

fixed and free rear surfaces of the slab are examined. A

uniaxial problem is also considered in which different bases

for the anisotropic hardening law are examined.

1 Associate Professor, Department of Solid Mechanics, Materials
and Structures, Tel Aviv University , Ramat Aviv.

2 Professor, Faculty of Mechanical Engineering, Technion, Haifa.
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INTRODUCTION

A unified theory for elastic-viscoplastic isotropic

work—hardening materials which has the property that it requires

neither a yield criterion nor loading or unloading conditions

has been proposed by Bodner and Partom (1]. In this formulation,

both elastic and inelastic defornations are present at all

stages of loading and unloading. This theory was implemented

in several two-dimensional dynamic indentation problems by

Aboudi (2] and extensive investigations were made concerning

the effect of the viscoplastic mechanism.

The isotropic theory ignores, however, the existence of

• the Bauschinger effect which expresses the observation that

material hardening in a given direction of stressing causes a

reduction of hardening in the opposite direction. In a multi-

axial situation, the material develops changes in resistance

to plastic flow (hardening) which vary in orientation as well

as with the sign of the stresses (or the inelastic deformation

rates). The resistance to plastic flow is therefore anisotropic

and depends upon the complete loading history.

In order to incorporate these effects, the theory was

generalized by Stouffer and Bodner (3] to include anisotropic

work-hardening. This is achieved by the development of suitable

evolutionary equations for the inelastic state variables which

represent the varying resistance of the material to plastic

flow in direction and in orientation. According to the equations

of (3], part of the rate of change of a state variable is

- —•———- —~s _ ~~. ._ a • - ~~~~~~~~ •• - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - _~~ • _ ~~- ‘ - - - -—- 
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isotropic and the remaining part depends upon the

relative sign and orientation of the current rate of

def ormation vector. As a consequence of the induced

anisotropic hardening, plastic flow of an initially iso-

- j -~ tropic material becomes anisotropic and compressible.

In the present paper, the theory of anisotropic

hardening is implemented on two-dimensional dynamic problems

to investigate the effect of non-isotropic work-hardening.

- 
• A numerical procedure is proposed which generalizes the

‘f - 

previous one described in (2 ] by including the dependence

of hardening on the complete history of deformation. The

‘ method is applied to a class of dynamic indentation problems

in which the contact region between the indenter (assumed

-
~~ to be rigid) and the elastic—viscoplastic solid is not

known in advance but rn .. ~t be determined as part of the

solution. The proposed procedure is also applied to a

thick slab which is excited by an extended time-dependent

I normal loading on its surface, while the other surface is

either rigidly clamped or traction-free. The effects of the

induced anisotropic hardening and the consequent anisotropic
- 

- 

•

- plastic flow are shown in each case, and comparisons

are made with corresponding results obtained from the

- - isotropic theory .

Finally, the method is illustrated in a uniaxial

problem of an elastic-viscoplastic rod which is impacted by

- 
- - - - - - 
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a time-dependent loading. Here we also investigate the

-~ effect of different reference bases for the non—isotropic

hardening law, i.e. the physical quantities that could

H -
~~~~ govern hardening. These could be either the current plastic

~ 
deformation rate (as in f 3]), or the current direct stress.

1 Compressibility effects associated with each case are also

•
~~ ~~~~

- calculated, and the results are compared with each other and

~1 with those of the isotropic theory.

I’

- - ~~~~~~~~~~• -
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BASIC THEORY

• The constitutive equations for elastic-viscoplastic

materials with isotropic work-hardening proposed by Bodner

and Partom ( 1] have the basic property that no yield criterion
nor loading or unloading conditions are required. In the

framework of these equations, both elastic and inelastic

deformations are present at all stages of loading and unloading

although one type of deformation might be negligibly small in

some loading regir~es. For infinitisimal strains (con-

• sidered in the present case), the constitutive equations of the

material can be described by separating the total strain rate

components into elastic (reversible) and plastic (non-reversible)

strain rates as follows

= ~~~~~~~~~~~ ~~~ i , j  = 1,2,3 (1)

where the strains are given by c.. (u. • + u •)/2 with u
• 1,] j ul.

being the components of the displacement vector and the dots.

representing time derivatives.

The elastic strain rates ~~~~are related to the stress

rates according to the usual Hooke’s Law (assuming elastic

isotropy) ,

— 
~ij
’2
~ 

— X
~kk&ij 2 3

~~2~~~ 
(2)

whe re A , ~ are the Lame constants of the material and is

the Rronecker delta.

~ 

-~ • -~~~~.- - -~~~~~~~~ -—~~~~~~~~~~ - •  -~~ --~~~~~•- • - • - ~~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• ~~-
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tn the nest general anisotropic plastic flow rule , the

plastic strain rates are related to the stresses according

to (3] ,

A ijk&sJU i , j ,k ,L = 1,2 ,3 (3)

where Aij k~ is a fourth order tensor valued function and

~~~ 
denotes the deviators of the stress tensor , i.e. ,

~i j  = - 

~kk~ij ’3• The symmetry properties of and

imply that

S

~ijk2. 
= 

~jik~ 
= A ij2k  (4)

Following Stouffer and Bodner (3] , let us rewrite (3) in a

6—dimensional vector space in the following form (the summation

convention does not apply to this paper on Greek letters):

A 6 A A

= ~ A~ 8T~ ct ,$=l ,...,6 (5)
8=1

wher~ 
A A

D T -

l~~ 11 , 1
_ s
il

A A

2 22 ‘ 2~~~~22

D —r 3
_ 

33 , 
3

~~~~~~~~~~~S33
A A (6)
D4 = /2~ , T4 ~~~~12

= V’7 
‘ = “s ~23 ‘

D6 = ~~ ‘ T6 = ‘
~~~~~ ~l3

and is a 6 x 6 tensor .

_ _  A
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By a proper orthogonal transformation we can reduce

(5) to the ~~rm

• 6
D = Z A  T (7)a ..1 a8 6

where A~~ is a 6 x 6 diagonal tensor.

The rate of plastic deformation Da and the stress deviators

Ta form , respectively , two vectors D and T each of six components

in the 6-dimensional space , whose bases are in which the

tensor Aa8 is diagonal (see (3] for more details) . Corresponding

to the Prandtl-Reuss equations for isotropic plastic flow , (7)

implies that the plastic deformation rate components Da are

parallel to the corresponding deviator Ta • On the other hand ,

the anisotropic plastic flow rule (7) does not lead to

incompressible plastic deformation since , in general ,

A11 ~ A22 ~ A 33 so that D1 + D2 + D3 ~ 0. For the case of

isotropic plastic flow , however , A1 = A 2 = A 3 A which implies

that D1 + D2 + D3 = 0. In this special case , plastic de formation

is necessarily isochoric for every choice of A .

A unified elastic-viscoplastic non-isotropic work-

hardening theory is achieved by assuming that each non-zero

component Aa8 (i.e. the diagonal terms Aaa) can be expressed

in terms of a single valued sca lar function of the second

invariant of the deviatoric stress tensor J2(J2 =
- 

• the temperature P and the state variables The terms

• = 0 for a 8 so that each non-zero component Za8 corresponds

directly to a non-zero component A
~8, 

i.e.

t
~

• -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~•
•- - - -~~~~~ •-- --•~- --- • • - - — • - —-——---•--

~~~~~~~~— —- -~~ ---~~~~~~~~~~ ——~~~~ - --- • - -—— ••-.-•---
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A = F(J
2~~~

T I Z aa ) (8)

The quantiti€~ Z a8 are referred to as the hardness variables

of the material which express its resistance to plastic flow.

They are used to describe the state of the material micro-

structure at any time t and thereby depend upon the complete

• 1 I • history of the deformation up to the current time.

Due to the Bauschinger effect, the response of the

material in tension and compression or shear to the left and

right are different as a result of which the material develops

anisotropic plastic flow. Accordingly , we define

[Z
+ (t ) D (t ) > 0

Z (t ) =1 ( 9)
1z  (t )  D (t )  < 0• a

where Z a(t) and Z~a
(t) are the hardness variables for positive

• and negative plastic deformation rates , respectively, (f ollowing [3 ] ) .

A specific form for the evolution laws for Z aa (t ) is

given in [3] in the form

1q~ ( t) + ( l—q) ~ ra (t) Da (t) > 0

~c*ct(t )  =~~ ( 10)
— (l— q)~ ra (t )  Da (t)  < 0

where z(t) is a single valued monotonically increasing function

• of the total plastic work W~(t) such that an increase in z(t)

- corresponds to an increase in the resistance of the material

to plastic flow. This implies that the hardness of the material

— —. - ~~~~~~~~ — •~~~ ~~~~ •~~~~—• • ~~~~•• ~~~~~~~•—— •— .• —~~——~~~ 
—•—— •

~~
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is taken to depend on the amount of plastic work which has been

done on the material from a reference state. In (10), q is

a material parameter describing the relative amount of

hardening that is isotropic, and r (t) are taken, following 13],

to be the “direction cosines” of the rate of deformation vector:

r (t) = D (t)/ID(t) l (11)

with

12 1 2 = D •

The evolution equations (10) for the state variables

which control the hardness of the material indicate that part

of the rate of change is isotropic and the remaining part

varies according to the sign and orientation of the current

rate of deformation vector. when q = 1, the completely iso-

tropic work—hardening situation is obtained in which all the

Aaa are equal and plastic deformation is incompressible. The

case q < 0 is admissible, e.g . cyclic softe~lng.

Integration of the evolution equations (10) yields

(0)  t
Z(t) = ~ + qz(T)dT +

t
!ci sign(D~ (t)] J(l~q)i(T)r~ (T)dT (12)

0

6
where Z (t ) = ~ Z aa (t )e a is a 6-dimensional vector described by

a=l ( 0 )
the base vectors ea, and z represents the initial hardness in

each of the six coordinate directions. Equation (12) expresses

—~~~~~~~ • ••
~~~~~~~~~~~~~~ ~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

—— -
~~~~~

• —— —• _p_• —~~ — — —  • -  
— - —— • —~~~~~~~~
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the dependence of the hardness of the material on the deformation

path . The second term in (12) represents the total isotropic

hardening up to time t , whereas the total anisotropic hardening

used to characterize the multi-&xi~ l Bauschinger effect is given

by the last term. As a consequence of ( 12) , the components

of Z at the current time t have different values which gives

induced anisotropic plastic flow .

Representation of the anisotropic plastic flow can be

completely determined by specifying A aa in ( 8) and ~ (t )  in (10) .

Motivated by equations relating dislocation velocities and

stresses, Bodner and Partom (1] proposed a relation which can

be generalized here for isothermal anisotropic hardening in
•

the form

A = D0exp[_~~~
(Z
~a
/3J2)~~

]/J2
1”2 (13)

where D0 is the limiting value in shear of the strain rate of

the material for high stresses and n is a specific parameter.

The function ~(t) in (10) is chosen to have the form

~(t) = m(z1-z0)exp (-mw (t)/z ]* (t) (14)

so that

z(t) = z1— (z1—z0)ex~ (—mW ~ (t)/z0] (15)

The rate of the plastic work is given by 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~ - - ~ —-.•-~~~~
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= :~ 
T~ D~ + trace (a

fl
) (D 1+D2+D3)/3  (16)

a l

and it should be noticed that the trace is an invariant quantity .

In (14) , z0 , z1 and m are appropriate parameters characterizing

the material.

It is seen from (15) that an increase in the plastic

work W~, corresponds to an increase in z which implies an

increase of the resistance of the material to plastic flow .

Equation (7) and (13) would lead directly to isotropic plastic

flow as in [1] by choosing Z aa= z for all a. For the general

case of anisotropic plastic flowi Z aa (t )  in (13) is obtained by

substituting ± ( t )  of (15) into ( 12) .  The anisotropic plastic

representation (12), (13) and (15) requi res the use of five

material constants q, n , m, z0, z1which must be determined

experimentally (D0 is actually a scale factor).

Returning to equation (7), it is necessary to know the

orthogonal transformation which diagonalizes the material

tensor of (5) . In the diagonal form A a8 and Z a8 are given

with respect to the basis vectors ea. If the material is
( 0 )  

-

initially isotropic Zaa(o) = Zaa= z0 for all a, and Z~8= Aa8= 0

for a~’8 so that ha8 is in diagonal form. Consequently , any

set of independent vectors can be chosen as the basis

vectors . As the defo rmation proceeds , the terms determined

from (12) become di f fe rent from each other and give rise to

• anisotropic plastic flow according to (13). 

~~—- 
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Formulation of the Problem

In this paper , we consider the dynamic response of a

slab -co<x1<o~, 0<x 2~ H under plane strain conditions . The slab

is made of an elastic viscoplastic anisotropic work-hardening

material whose constitutive equations were described in the

previous section .

The slab is initially at rest at time t<0. The surface

= H is assumed to be kept either traction-free

1~ 
a12 = a22 = 0, < X

1 
< 

~~~, x2 = H , t > 0 (17)

or rigidly clamped

U
1 

= U
2 

= 0 , —
~~~ < x1 < ~~~, x2 = H , t > 0 (18)

Two different situations for the slab will be considered in this

paper.

(1) Dynamic indentation by a rigid punch:

In this case,the surface x2 = 0 of the slab is pressed

at t = 0 by a rigid indenter. As the indenter penetrates the

slab, there is a region on the surface x2 = 0 which at first

has traction-free boundary conditions but later are displacement

conditions. The boundary of tb;: slab conforms to the geometry

of the rigid body at the contact region which , in gc~neral , is

initially unknown and must be determined from the solution.

Consequently, the appropriate boundary conditions for a friction—

less contact are 

~~~~~~~~~~~ -~~~~~~~- d - - -~~~-.”
_ - -  ~~~~~~ —-• -~~~~~~~ --~~~~~~~ • -.~

_
~~~~_
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a2l = 0  1
< X(t), x2 = 0, t > 0 (19)

= f(x1,t) J
and -

a21 = 0  I
? 1x 1 1 > X(t), x2 = 0, t > 0 (20)

a22 — 0  J
where f(x1,t) is the prescribed x2 displacement imposed over

the time-dependent region of contact. The function X(t)

describes the boundary of the moving region , which is a priori

unknown , with X ( 0 )  = 0.

I • (2 ) Dynamic excitation by time-dependent normal tractions :

Here we assume that extended normal tractions are applied

on the surface x2 = 0 so that

a21 = 0  1
j~~~_ c o < x

1
< c o ~ x2 = 0 ,  t > 0  (21)

a22 = g(x1,t) J
with g (x1,t) describing the form of the spatial and temporal

excitation.

The stress-strain relations in the plane strain conditions

for which £13 = 
~23 

= £33 = 0 are obtained from (2) and (1) in

the form.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2 2)

The displacements u1(x 1,x21 t) and u2 (x11x2,t) are governed by

the dynamic equations of motion. These follow by substituting

(22) into the equilibrium equations :

~ L —• -• • 
-— - 

~~~~~~~~~~~~~~~~~~~~~~~~ •
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= ~~~~~~~~~~ (23)

in the absence of body forces, with p being the density of the

material. Substituting (22) into (23) leads to the equations

of i~~tion:

1 = (A+2p)u1,11 + pu1,22 + (A+p)u 2,12 —

- 

—2 ‘ + 
(p)

P € ~~~] ,~~~ 
E].2,2

= (~~2p)u2,22 + ~tu 2 ,11 + (A+ i i )u 112 — 

~~kk,2

—2 p ( c~~~~1 + C~~~~2 ) (24)

For isotropic hardening, plastic deformation is incompressible ,

i.e., ~~~~~~ o and (22 ) ,  (24 ) reduce to those given in [2]. In

the following section, we present a numerical procedure which

enables us to solve the above mentioned dynamic problems. 
:

I:

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~ 
•
~~~~••~~~~~~~~ ~~~~~~~~~~~~~~~~~ - • •~~~~~~~~~~ ~~~~~~

• • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Numerical Treatment

The numerical treatment of the two-dimensional dynamic

problem for the viscoplastic slab, which was formulated in

the previous section, is based on a finite difference

procedure. This is performed by introducing a net of mesh

• sizes Ax1, Ax2 in the x1 and x2 directions respectively

together with a time increment At. The present numerical

treatment is a generalization of the procedure given in (2 ] for

isotropic plastic flow.

The procedure can be divided into three parts. In the

first part, the displacement components at interior points

within the slab are computed from the equations of motion (24).

In the second part, the inelastic variables are computed

throughout the slab. Finally, the third part consists

• of the computation of the displacements at the boundaries

= 0 and x2 = H.

Part 1: The displacement components u1(x11x2,t), u2(x1,x2,t) at

interior points within the slab are governed by the dynamic

equations (24). These are solved by replacing all the

derivatives by their corresponding central difference expressions

obtaining an explicit three-level system of difference

equations. Thus, it is possible to compute the displacements

U1, U2,  at time t + At provided their values at the previous

and current steps t - At and t, respectively, as well as the

values of plastic strains at time t,are known throughout

the medium. The form of this difference system of equations is . -
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essentially similar to that given in (4] in a perfectly

elastic solid, and the additional inelastic terms add no

basic difficulty. This system is of a second order accuracy,

i.e., the error by which the exact solution of the dyna~tic

equations (24) does not satisfy the corresponding difference

equations at a point is of second order in the increments.

Part 2: In order to compute the inelastic variables , we

denote the plastic strains by Ea(x1,x2,t) such that = Da with

defined in (7) . The plastic strain and the plastic work

are governed by (7) and (16) respectively with Aaa given in

(13) . For the plane strain problem , these equations provide

a system of five equations in the unknown plastic strains and the

plastic work in terms of the variables at time t at any point

in the region. These equations can be integrated to yield

the Ea and Wi., at time t + At at a point of the slab provided

that Aaa(xi~
x2~

t) is known at that point .

In order to compute A aa (X l~ x2 lt )  at a point at time t ,

the hardness Z
~a

(Xl~
x2~

t) must be determined (see eqn. (13)].

This is achieved by employing (10) which leads approximately

to

Z~~a (X i~~X2~~t) Z
~~a

(X i~ x2~~t~ At) + q A z ( x 1,x 2, t)

+ (1—q)Az(x 1,x2,t)r (x1,x2,t—A t) (25)

where Az is computed from $

— —
~~
_S-__ - -~~~~ —-- —---~~ —-
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-
• A z ( x 1, x2 , t )  ~~(x1, x2 , t ) At (26 )

The term ~ in (26) is approximated according to (14-15) by

~~(x11 x2, t) = iu[z1—z(x1,x2,t))* (x1,x21t—At) (27)

and Z a (X 1~ X2~
O) = z0 assuming that the material is initially

isotropic.

Having computed Z
~a
(Xj , x2 ,t) from (25), (9) can be used

to determine Zaa(X1~
X2 ,t). This is then employed in (13) to

obtain Aaa(xi,x2t) so that (7) and (16) can serve to provide

the values ct Da(xi,x2,t) and *~(x1.x2~t) respectively.

Equations (7) and (16) can be integrated to give the

plastic strains and plastic work at time t+At by using the

improved Euler-Cauchy method. According to this method

-~ E0 and at time t+At are tentatively predicted from

*
E a (X 1iX 2~~t+At) = E a (x 1, x2 ,t )  + AtD a (x1~ X2~ t)

(28)

W

~~

(x 1
~~

x2
~

t+At) = W~~(x 11 x2 1 t) + At~~~(x 1.x 2~ t) -

•

a = 1, . . . ,  4

-
~~ 

These values are corrected according to

H Ea (xi ,x 2, t+At) — Ea (Xi~ X2~
t)

+ A t ( D a (x iix 2 .t )  + Da (xi~ x2 t+At) ] /2 

-—-—~~~~--—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
- - 

- -  • • -•



_________________________________________________________________________________________________ - — - - - — • - - - •

— 17 —

W~ (x1~x2~t+At) = W~ (x11 x2~t)

- • *
+[* (x1,x21 t) + *~(x11 x2~t+At) ]/2 (29)

and the stars over Da and ~ indicate that these are evaluated
* *

p
using Ea (Xit X2it+At) and W~ (x11x21t÷At). On the other hand,

the evaluation of Da and * requires the determination of

Aaa ii X2~
t+At) and these can be computed after obtaining

Z
~a

(xi,x2,t+At) . This is performed in the same manner as in the

computation of Z
~a

(x1,x2,t) according to (25), but using instead

the starred quantities, i.e.,

• + + *

Z;a(x1,x2,t+At) = Z;a(xl,x2,t) + qAz (x1,x2,t+At)

+ (l—q)A~ (x1,x2,t+At)r(x1,x2,t) (30)

Consequently, it is possible to compute the plastic strains and

plastic work at any point within the region at the time t+At

when all the field variables are known at time t-At and t.

Part 3: The boundary displacements at x2=O are determined

according to the relevant boundary conditions ((19-20) for the

indentation problem or (21) for the applied tractions). For the
— 

- dynamic indentation of the slab by a rigid body, the boundary

conditions (19-20) at x2= 0 are imposed as in (2], taking into

account the fact that the region of contact between the slab and

the indenter is, in general, unknown in advance but must be

determined as part of the solution. This was achieved by an

iterative procedure which is continued until all the requirements

A - •• 

~~~~~~~~ 
•—— •~~~~•,  —— • • • -
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of the indentation problem are satisfied simultaneously

(see [2] for more details).

When time-dependent normal tractions are applied on

the surface~~=0, the boundary conditions are given by (21).

These are imposed by approximating the derivatives in the

direction by central difference expressions and the

derivatives in the x2 direction by forward difference

expressions. Consequently, a system of algebraic equations

in the unknown displacements at the boundary x2=0 is

obtained at every time step as follows:

u1(iAx 1,x2 1t) 
— u1(iAx 1,x2+~Ax2,t)

—n {~~(u2 ((i+1)Ax 1,x2,t) 
— u2 ((i—l)Ax 1,x2,t)]

—2Ax2E4 (x1,x21t) } = 0

u2 (iAx 1,x2,t) — u2(iAx11x2+r~Ax2,t)

—n{c5(u1((i+l)Ax 1,x2,t) — u1((i—1)Ax1,x2,t)]

—Ax 2 [2t ~1E2 (x 1,x2,t)  + tS (E 1(x1, x21t) + E2 (x1,x2,t)

+E 3 (x1,x2,t ) ) + g(x 1, t ) ] }  = 0 (31)

where

£ = Ax2/(2Ax1) , 6 A/(X+2p) , ói = p/(A+2p ) ,

x2 = o  , ~~=l.

- -- ~~~~ ~~~~~— -  — - —•—-—~~~~ —--— — • -—- - - ~~~~ - ——~~- •~~~~~~~~~~ —~ - -•~~~~~~ __________ • A
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Since the loading under consideration is symmetrical about

the x2 axis, the points x1<O need not be considered,

i.e., i=0,l,2,....

The traction free conditions (17) at the surface x2 H

also gives the system of equations (31) but with x2 H, n - l,

g(x1,t)=0. As in the perfectly elastic problem [5], it is

convenient and efficient, both from the rate of convergence

and programming viewpoints, to solve the above system of

equations by the Gauss-Seidel iterative procedure. Details of

the proof of the convergence of the process are given in (5].

I

t 

~~~~~~~~~~~~~~~~
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Applications

The proposed method has been applied to the problems of

the dynamic indentation of a viscoplastic slab by a long rigid
- 

- circular cylinder, and to that of a slab subjected to an —

extended normal load rapidly applied on the slab surface.

- 

- 
Calculations were based on titanium as the slab material for

which the elastic and plastic constants are given in (1]:

A = 0.9366 x 10~ N/mm
2, p = 0.44 x l0~ N/mm

2, p = 4.87 gm/cm3,

= 1150 N/mm2, z1 = 1400 N/mm2, D0 = l0~ sec~~, n = 1 and

m = 100. Th~ material parameter that prescribes the relative

amount of isotropic hardening, q, was found in (6] to be

q = 0.05 for titanium. This was obtained under uniaxial

cyclic stressing conditions using the current direct stress

-
~~~~ as the reference for the relative hardening effects. The

value q = 0.05 was used in these calculations although it is

not exactly representative since the hardening “cosine law”

in the present formulation is based on the current plastic

deformation rate (11). Further studies on this subject were

made in relation to the uniaxiai. stress problem discussed

later in the paper.

The slab thickness was taken to be H = c0D0~~/5 which

means that a compressiona]. elastic wave whose speed in the

material is c0 = ((A+2p)/p ]
1’12 will propagate the- distance 5H

during the time interval D0
1. Results -presented in this

j paper were obtained, as in (2],with the spatial increments

= ~x2/H = 0.1 and the time step c0At/H = 0.05.

(1) The dynamic indentation by a rigid long circular cylinder :
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For a long rigid cylinder indenting the slab, the

function f(x1,t) in (19) has the form

f(x1,t) = p(t) — R + (R2—x 1
2)~~

’2 (32)

In this equation, p(t) is the penetration distance of the indenter

along the x2-axis, i.e., p(t) = u2(0,0,t) ,and R is the radius

of the cylinder. This is assumed to be much larger than the -

contact area so that the boundary conditions (19-20) are

applicable. When the cylinder is pressed into the slab at a

constant speed V, p(t) = Vt.

In Fig. 1, plots of the normal and tangential stresses

a22, a1~~, the vertical displacement u2,and the plastic work W~

are given versus the distance x1 along the surface x2=0 of the

slab when c0t/H=2.5 and, 5 with V,t~0 = 0.05 and R/H=5. The other

surface of the slab is kept rigidly clamped so that (18) holds.

In the same Figure, the plastic work along the plane of

symmetry x1=0 within the slab is also shown. The stresses are

normalized with respect to a0 = A-f2p .

These results are compared with those corresponding to

completely isotropic plastic deformations, i.e. q=l. This com-

parison indicates that the effect of the anisotropic hardening

on the stress field and the shape of the deformed surface of

the slab is not significant in this case.

The plots of the plastic work W~ give an indication of

the amount of plastic deformation at various points of the slab

at a given time. The anisotropic hardening case is seen to lead

to lower values of W~, compared with the isotropic one. This

~ 

~~~~~~~ - - —~~~~~~~~~~~ ••• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ —-~~ - —— ~~~~~~~ - - --— -
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J 
does not seem to appreciably influence the surface stress field

nor the contact area or the force requi red to tress the cylinder

into the slab in this example .

It is interesting to compare the amount of plastic
3

volume change E(x1,x2,t) = ~ Ea (X 1iX2~~
t ) which is obtained in

the case of anisotropic plastic flow. (When the flow is

isotropic the plastic de formation becomes isochoric at all

times so that E (x 1, x2 1 t) 0 ) .  Table I presents E ( 0 ,0 ,t) at

several times after the initiation of the identation process.

The Table clearly shows a monotonic increase with indentation

of the vol ume change due to plastic d~eformation at the given

point.

The present indentation problem was also examined for

the case when the surface x2=H of the slab is kept traction-free

so that ( 17) is applicable . Here too , the results for the

stress field show similar correspondence between the aniso—

t ropic and isotropic hardening. Extensive studies of the

response to dynamic indentation of a slab made of an elastic-

viscoplastic isotropic work-hardening material can be found

in ( 2 ] .

(2) Applied time-dependent loading :

The viscoplastic slab is subjected to an extended normal

time-dependent traction (21) at x2=0 of the fo rm

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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~~ osin(1rt/2t m) ]  t<tm

g(x1,t) = ,lx 1I~H’ (33)

- : [g0 t>tm

and g (x1,t) = 0 for 1x 11> H . In Fig. 2 , the resulting stresses

and plastic work are shown at x2=H/2 versus x1 when c0t/H = 2.5

and 5 with g0/ci0 = 0.1 and Cotm/H = 2.5 in (33). In this Figure

we present also the plastic work along the plane of symmetry

x1=0 within the slab at the same times. These results are

compared with those corresponding to the isotropic hardening

case (q l). In both cases, the other surface of the slab

x2=H is assumed to be rigidly clamped (18). The comparison

shows that when c0t/H = 2.5, the resulting stress fields are

still similar. When c0t/H = 5, however, considerable differences

occur in the stress fie1ds~ between the two cases which exhibits

the effect of anisotropic hardening.

In Fig. 3, we present the results for the same two cases

as Fig. 2 but the surface x2=H of the slab is kept traction-free

(17). Here the effect of the anisotropic hardening is less

pronounced. The different results -obtained in Figs. 2 and

3 are attributed to the clamped and free boundary conditions

which affect the reflected stress waves differently.

/ Finally, Table II gives the amount of plastic volume

J change at the point x1—x2—0 at several times, when the surface

x2—H of the slab is either rigidly clamped or traction—free .

L4I~
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(3) Uniaxial deformation due to dynamic loading:

In order to obtain better understanding of the effect

:1 . of anisotropic hardening, the simplest one-dimensional problem

of uniaxial dynamic loading of a thin rod of length H in
I the x2 direction was considered. The rod was assumed to

be made of elastic-viscoplastic anisotropic work -

- hardening material (titanium). In this case the only non-zero

stress component is the axial stress a22 so that (2) reduces

to

E 3422 a 22

where E = p(3A+2p)/(A+p) is the Young’s modulus of the material.

t The constitutive equation (•22) then reduces to

a — —
-
~~~~~~ 22 C 22 £22

~
-

with £22 = ~u2/ax2, so that (24) take the form

= E (u 2 , 22 
— C2~ ,2

)

- 

-

. 
It is assumed that x2=0 is loaded in the form

• [g1 sin(2lTt/tm) t 
~ 
tm

a22 = ‘

~ 

(36)

L0 t > t m

• with g1 being an amplitude factor, and the other end is kept

stress-free, i.e.

- •~~~~ —— — — - -~~~~-— • —~~~ —~~ • • • - -•~~~~~~~~~ — -••~~ ~~ —— —- -~~~ ~~•- ~~~—•- ~~~~~~~~~~~~~~~ ~~~~~~~~~— -- ~~~~-
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• 
a22 0 x2 = H  (37 )

This one—dimensional dynamic problem forms a special case of

the two-dimensional formulation and the method of solution .

By solving the problem for g1/a0 = 0.05 and Cotm/H = 0.5

in (36), we find that the axial stresses when q = 0.05 are the

- 
-
~~ same as those for q=l, i.e., the effect of anisotropic hardening

is negligible for all times. It turns out that the resulting

stresses saturate in this case so that the effect of anisotropic

hardening would therefore be relatively small, e.g. [7], in

accordance with our observation. On the other hand, choosing

g1/a0 = 0.005 and Cotm/H = 0.5 in (36), for which the

amplitude of the applied stress is in the vicinity of the yield

stress, the effect of anisotropic hardening becomes fairly

pronounced , Fig.4.

All the results presented in this paper were based on the

assumption of (3] that the anisotropic change in resistance to

plastic flow is in the direction of the deformation rate, so

that the “ cosine law” (11) for the rate of plastic deformation

is applicable. Another possibility is to use a “cosine law”

- ~- for the current stress which means that r
~
(t) in (11) would be

replaced by

ra(t) = a ij / (3 J 2 )
~~

”2 (38)

with obvious relations between a and i, j (see eq.(6)). Note

- 

• 

• 

that (3,72)
1/
~
2 is the “effective stress”. In a uniaxial problem,
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(38) gives r2 = 1 for a 22 > 0 and r2 = — l for a 22 < 0. As

previously mentioned , the relative amount of isotropic hardening ,

q in (10), was determined for titanium in (6) using this rule.

It would be interesting, therefore, to compare the effects

of anisotropic hardening using either (38) or (11). This

H comparison also appears in Fig. 4 which exhibits the axial stress

— 
and plastic work versus time at the observation point H/2 at the

middle of the rod when it is loaded according to (36) with

g1/a0 = 0.005 and cotm/H = 0.5. It is seen that these two

cosine laws do not lead to appreciable differences in this case.

A consequence of this observation is that the value of q chosen

to match a given uniaxial stress response should not be sensitive

to the choice of either anisotropic hardening law. Fig. 4 shows,

however , that the response is considerably different when hardening

is assumed to be isotropic (q=1).

Finally , Table III presents the amount of plastic volume

change at the mid-point of the rod at several times when the

“cosine laws” (11) and (38) are used. The Table shows that the

amount of volume change when employing the stress “cosine law” (38)

is about three times larger than that obtained using (11) with

the sane value of q. The plastic volume change is therefore a

more sensitive indicator of the difference in hardening laws than

the stress response for the uniaxial stress case. Which of the

two references for anisotropic hardening, i.e. stress or plastic

strain rate, is closer to the physical situation is not obvious

and will be the subject of further investigations. It is noted

that the stress rule (38) leads to simpler numerical work.

-- ~~~~~~~~~~~~~~~~~ ~~~• • -
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Conclusions

Constitutive equations for elastic-viscoplastic

anisotropic work-hardening materials proposed by Stouffer and

Bodner (3] have been implemented to study the effect of amigo-

tropic hardening and the resulting induced anisotropic plastic

flow in several two-dimensional dynamic problems. A basic

assumption in the formulation (3] is that anisotropic hardening

is controlled by the sign and orientation of the rate of

plastic deformation. An alternative formulation could be

adopted by taking a “cosine law” based on the current direct
- — stress. These two law are investigated in a uniaxial dynamic

problem. Further studies on the applicability and implications

of these hardening laws are under investigation. 

- - - -~~ - - -~~~~~~~~~~---— -- -~~~~-- . -  -~~~~~~~~~-~~~~~ - - _ _ _ _
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TABLE I

time E(0,0,t) x io2
c0t/H 

__________________

0 . 5  0. 07
1.0 0.11
1.5 0.13
2.0 0.1.5
2.5 0.33

3.0 0.54

3.5 0.78
4.0 1.05
4.5 1.31

5.0 
• 

1.57

I

Variation with time of the amount of
volume change due to the plastic de-
deformation at the point x1 x2=0
directly under the indenter.

—~~~~~~~~~~ I —- ~~~~~~~~~~~~~~~~ -• •••~~~ ___________________ I
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TABLE II

time E(0,0,t) x io2

C0t/H rigidly clamped traction-free
rear surface rear surface

0.5 0 0
1.0 —0.21 —0.21
1.5 —0.57 —0.56
2.0 —0.91 —0.58

- . 2.5 —1.14 —0.44
3.0 —1.27 —0.66
3.5 —1.33 —0.80
4.0 —1.40 —0 .89
4.5 —1.48 —1.01
5.0 —1.59 —1.19

Variation with time of the amount of volume change
due to plastic deformation at the point x1—x2=0
for a slab loaded at x2=o when the other surface is
rigidly clamped (18) and traction—free (17). 

~~~~—-~~~~~~~~~
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TABLE III

4 ~ -

time amount of volume change
- c0t/H due to plastic deformation

“strain rate” “stress”
cosine law (11) cosine law (38)

0.5 0 0
1.0 —0.13 x l0~~ —0.34 x 10~~
1.5 —0.26 x l0~~ —0.69 x 10~~
2.0 —0.40 x 10~~ —0.11 x io 2
2.5 —0.81 x iO~~ —0.22 x io 2
3.0 —0.54 x l0~~ —0.18 x l0 2

3.5 —0.53 x ~~~ —0.18 x 10 2
- 4.0 —0.44 x —0 .16 x io 2

~ ‘ ~~- —3 —24.5 —0.35 x 10 —0 .14 x 10
5.0 —0.35 x 10 —0.14 x 10

Variation with time of the amount of volume change
due to plastic deformation at the mid-point of the
rod based on the “strain rate” cosine law (11) and
the “stress” cosine law (38) for anisotropic hariening.

I 

~ •-. .• __________ ~~~~~~~~~~~~~~~~~~ • - --. • •~~• • _  •~~~
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• FIGURE CAPTIONS

Figure 1: Uniform frictionless indentation of an elastic-
viscoplastic anisotropic work—hardening slab
( ) and isotropic work-hardening slab
(—-- -) , by a long rigid circular cylinder with a
speed V/c0 = 0.05. The plots show the normal
and tangential stresses, vertical displacements
and plastic work versus the distance along the
surface x2=0, and also the plastic work along
the plane of symmetry x1=O within the slab, at

— times c0 t/H = 2.5 (top) and c0 t/H = 5 (bottom) .

- : Figure 2: Time-dependent normal loading of an elastic—
viscoplastic anisotropic work-hardening slab
(—) and isotropic work-hardening slab (---)
whose rear surfaces are rigidly cl~imped. The
plots show the stresses and plastic work versus
the distance along x2 = H/2, and also the plastic
work along the plane of symmetry x1 0 within the
slab, at times c0 t/H = 2.5 (top) and c0 t/H = 5
(bottom) . The loading function is given by (33).

Figure 3: Same as Figure 2 but for a slab whose rear
surface is traction—free.

Figure 4: Axial stress and plastic work versus time at the
mid-point of a rod made of elastic-viscoplastic
anisotropic work-hardening material whose aniso-
tropic hardening is governed by the “cosine laws”
on ~~ (11) (.....), and on a (38) C————) , and for an
isotropic work-hardening material C— ). The

loading function is given by (36).
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